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The primary instability of a falling film selectively amplifies two-dimensional noise 
down-stream over three-dimensional modes with transverse variation. If the initial 
three-dimensional noise is weak or if it has short wavelengths such that they are 
effectively damped by the capillary mechanism of the primary instability, our earlier 
study (Chang et al. 1993a) showed that the primary instability leads to a weakly 
nonlinear, nearly sinusoidal y1 stationary wave which then undergoes a secondary 
transition to a strongly nonlinear y2 wave with a solitary wave structure. We show here 
that the primary transition remains in the presence of significant three-dimensional 
noise but the secondary transition can be replaced by a selective excitation of oblique 
triad waves which can even include stable primary disturbances. The resulting 
secondary checkerboard pattern is associated with a subharmonic mode in the 
streamwise direction. If the initial transverse noise level is low, a secondary transition 
to a two-dimensional yz solitary wave is followed by a tertiary ‘phase instability’ 
dominated by transverse wave crest modulations. 

1. Introduction 
In many unstable open-flow systems which selectively amplify two-dimensional 

disturbanes at inception over three-dimensional ones, the evolution towards the final 
turbulent and fully three-dimensional waves often involves the long duration of two- 
dimensional waves that are locally stationary, namely they travel at constant speed for 
a long time without significant variation in their shape. These systems include shear 
layers (Thomas 1990), bounded Poiseuille flows (Orszag & Kells 1980) and the falling- 
film instability studied here. The three-dimensional disturbances are then secondary 
instabilities triggered by finite-amplitude two-dimensional stationary waves. The 
preferential excitation of the three-dimensional waves suggests that, in contrast to the 
primary instability which satisfies the analogue of Squire’s theorem, three-dimensional 
secondary disturbances are more unstable than two-dimensional ones. It then becomes 
a key step in the downstream evolution towards turbulence. The analysis of these 
secondary transitions to turbulence is simplified by the long lifetimes of the saturated 
two-dimensional stationary waves beyond the primary instability. This is especially 
true for the transitions on a falling film at  relatively low flow rates (for Reynolds 
numbers R < 300) where the stationary waves are well characterized experimentally. 
These secondary transitions can be studied by constructing all two-dimensional 
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FIGURE I .  The wave profiles and phase-space trajectories of the y1 and y2 family at small 8. The 
normalized wavenumber k = z/zo is also labelled, where 3,) is the neutral wavenumber. The y1 family 
ranges from kE(0 .  1) while the y 2  family lies within ks(O,0.5). The most stable (least unstable) 
wavemember of they, family is at k$  = aJz,, - 0.76 and its wave profile resembles the second y ,  wave 
shown. The phase-space trajectories are in the space of (h,lZ.y,/z.,,.). The solitary wave limit at 
vanishing k approaches a homoclinic orbit connected to the flat-film fixed point ( I ,  0.0), reflecting the 
fact that all periodic stationary waves, which are closed trajectories in the phase space, arise from a 
Silnikov global bifurcation of the homoclinic orbit, The amplitude of the wave and closed trajectories 
increases with decreasing k but they are not drawn to scale. 

stationary waves and studying their stability to two-dimensional and three-dimensional 
disturbances. The results determine not only which two-dimensional waves are selected 
beyond the primary transition but also what kind of secondary three-dimensional 
patterns are generated subsequently. 

For a low-Reynolds-number falling film, the initial filtering of small-amplitude 
transverse variation is due to the stabilizing effect of surface tension when inertia is 
small. As a result, two-dimensional stationary waves are very pronounced in wave 
transition on falling films (Chang 1994). These stationary waves have now been 
exhaustively constructed and favourably compared to observed ones (Chang, 
Demekhin & Kopelevich 1 9 9 3 ~ ) .  Under most conditions, two families of periodic 
stationary waves, y 1  and y2,  are involved in the transition. For vertical or nearly 
vertical films, the y 1  waves travel slower than the linear phase speed, which is three 
times the average fluid velocity a t  inception, while the ya  waves travel much faster than 
the phase speed of an infinitesimally small wave of the same wavelength. The 
wavenumber of the y1 family extends from aO, the neutral wavenumber, to the solitary 
wave limit of zero. However, from our stability analysis, the wave member most stable 
(or least unstable) to two-dimensional disturbances is a t  a, - 0.8a,,, which is slightly 
shorter than the linearly maximum growing mode at arn - z,,/z. 2. Near the critical 
Reynolds number, this specific wave member at CZ,~ is stable to two-dimensional 
disturbances but, sufficiently far from criticality, it becomes merely the least unstable. 
Since its wavenumber is close to the neutral value of a,,, its amplitude is small and its 
shape is nearly sinusoidal with only a small overtone content. I t  can hence be estimated 
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FIGURE 2. The two dominant three-dimensional patterns: (a) the herringbone pattern with a 
checkerboard middle strip; (b) the crest-modulating phase instability. The white regions represent 
crests and black regions valleys. The x- and y-axes in this figure correspond to the transverse and 
streamwise directions, respectively. 

by a weakly nonlinear formalism like the Stuart-Landau expansion from the neutral 
curve (Chang 1994). The yz wave branch, on the other hand, begins at a wavenumber 
of a2 - 0 . 5 ~ ~  and extends to zero wavenumber. They are hence much larger in 
amplitude with a large Fourier content. Their shapes resemble localized solitary waves. 
These strongly nonlinear waves cannot be analysed with weakly nonlinear bifurcation 
theories and are best described by a Silnikov global bifurcation analysis of a 
homoclinic orbit (Chang, Demekhin & Kopelevich 1993b). Also unlike the y1 branch, 
the yz branch has infinitely many segments that stable to two-dimensional disturbances 
even far from criticality. Our earlier two-dimensional simulation (Chang et al. 1993 a)  
indicates that waves at inception first evolve towards the nearly sinusoidal a, wave on 
y1 and then towards a stable nearly solitary wave on yz. The waves then stay at one 
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FIGURE 3. The two speculated transitions to three-dimensional patterns for 6 = 0.062. (a)  The 
checkerboard pattern appears when there is significant transverse variation initially. Otherwise, (b), 
transition to a yz wave is followed by crest modulation. The wave members on yz that are stable to 
two-dimensional waves are marked by thick segments. 

of these locally stable y2 waves indefinitely unless persistent large-amplitude noise is 
present to push the system out of its domain of attraction. There is a lower bound af 
for the wavenumber of y2 waves stable to two-dimensional disturbances. Periodic 
forcing to generate yz waves below af has resulted in chaotic two-dimensional wave 
patterns in several experiments (Alekseenko, Nakoryakov & Pokusaev 1985 ; Liu, Paul 
& Gollub 1993). Representative wave profiles of the y1 wave family, including the 
nearly sinusoidal one at as, and the y2 wave family, including the long stable nearly 
solitary waves whose distinctive humps have sloping backs and steeper fronts relaxed 
by small ‘bow’ waves, are shown in figure 1. We note from the figure that there is near 
symmetry between the near-solitary waves of the y1 and y2 families. We have shown 
that (Chang et al. 1993a), for near critical conditions, they are related by an inversion 
(wave height +- negative height) and a reflection (x-. -x). However, the inverted near- 
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solitary waves, analogous to negative solitons, of the y1 waves are unstable for vertical 
films and have never been observed. The positive near-solitary waves of the y2 wave, 
in contrast, are very stable far from criticality and they dominate the interfacial 
structure during wave evolution. 

If there is a significant amount of three-dimensional disturbances, the transition 
scenario can be quite different. In a recent numerical analysis of low-Reynolds-number 
falling films, Joo & Davis (1992) suggested that all y1 stationary waves are unstable to 
three-dimensional disturbances. This is confirmed by our recent stability analysis of the 
y1 and yz waves for much larger Reynolds numbers (Chang et al. 1993 a). Experimental 
studies by Liu et al. (1992) for an inclined film have also shown that, at sufficiently large 
distance downstream, two-dimensional stationary waves will trigger two types of 
secondary three-dimensional wave pattern - a herringbone pattern and a wavering- 
crest ' phase' instability. The former resembles a middle strip of checkerboard three- 
dimensional pattern flanked by strips of two-dimensional crests with approximately 
one-half the streamwise wavelength of the middle strip (see our reconstruction in figure 
2a). In the experiments, the 'side bones' bow slightly because of boundary retardation 
effects to give the herringbone appearance. The second three-dimensional pattern 
involves a long-wave transverse variation which distorts the crests but does not pinch 
them off initially since the streamwise disturbance is negligible in amplitude compared 
to the wave crest (figure 2 b). (Pinch-off will occur eventually if the lateral modulations 
are sufficiently large to bridge two neighbouring crests.) We shall show in this paper 
that the checkerboard in the middle of the herringbone pattern is excited by the y1 
waves near 01,~ while the phase instability is characteristic of three-dimensional waves 
excited by the yz  waves. We shall establish that the primary transition to the a, wave 
of the y1 family is relatively insensitive to the noise characteristics owing to the filtering 
effect of the primary instability. Secondary transitions from the tl., wave, however, are 
highly sensitive to the level of three-dimensional noise. The checkerboard transition 
ensues if there is sufficient disturbance in the transverse direction. Otherwise, a nearly 
two-dimensional evolution towards a yz wave occurs followed by excitation of 
transverse disturbances in the form of the phase instability (see figure 3). 

2. Primary linear stability and stationary waves 
In our earlier studies (Chang et al. 1 9 9 3 ~ ;  Chang 1994), we have shown that, since 

the characteristic lengthscale in the normal direction y is much shorter than those in 
the down-stream x and transverse z directions, the equation of motion for a relatively 
low-Reynolds-number film ( R  < 300) can be simplified by a ' boundary-layer' 
approximation which neglects the a/ax and a/& terms relative to the i3/i3y term. We 
have shown that this simplification is an excellent one, as far as the linear stability 
analysis and the stationary wave profiles are concerned, for most fluids. Yet it offers 
a significant numerical advantage because the omitted terms tend to induce numerical 
instability and yield complex terms in the interfacial conditions (Chang, Demekhin & 
Kopelevich 1 9 9 3 ~ ) .  Scaling the streamwise and transverse velocities by ( u )  and the 
smaller y-component by ( u ) / K ,  y by h,  and ( x ,  z )  by Kh,, and time by KhN/(u) ,  where 
( u )  = gh2,/3v is the average velocity, h,  is the Nusselt film thickness for the flat film 
and 

4 1  

y = cr/pvzgz, R = ( u )  h,/v, W = g/p(u)' h, j 
are the scaling parameter, Kapitza, Reynolds and Weber numbers where g, Y ,  C, p are 

9.2 
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gravitational acceleration, the liquid kinematic viscosity, surface tension and density, 
one obtains the following boundary-layer equations : 

which are coupled to the continuity and kinematic equations 

au av a w  -+-+- = 0, 
ax ay az 

with boundary conditions 
c ? ~  a w  

y = h(x,z, t ) ,  - = - = 0, 
a Y  aY 

y = o ,  u = v = w = o .  (2 f  1 
The long-wave expansion of the boundary-layer approximation has been invoked to 
yield (2e). The lone parameter that appears in the above equation is 

6 = H/5&2, ( 3 )  

which is a normalized Reynolds number that measures ratio of inertia to surface 
tension. The Navier-Stokes equation is parameterized by two parameters, R and W. 
The boundary-layer approximation hence yields the additional advantage that the 
number of parameters is reduced to one. 

Using the same expansion as in our earlier analysis of the two-dimensional problem, 
it can be shown that a primary disturbance to the Nusselt-flat-film basic state with a 
normal mode of the form exp i(ax + pz - act) yields the following relationship for the 
neutral curve (ci = 0) in the limit of small 6: 

c = 3, 18a26 = (a2+p2)'. (4) 
This neutral curve reduces to the two-dimensional version derived earlier (Chang et al. 
1993a): 

where a,, is the neutral wavebumber for two-dimensional disturbances with zero 
growth rate and c,, is the phase speed at the neutral wavenumber. The growth rate acI 
and the neutral curves are sketched in figure 4. It is clear that the primary three- 
dimensional disturbances are more stable than two-dimensional disturbances (p = 0) 
in an analogue of Squire's theorem. This is then the linear filtering mechanism that 
tends to filter away transverse variation during inception. 

In the limit when S approaches zero (near criticality limit, see figure 4) such that both 
a and /3 of the unstable linear modes become small, of O(d),  one can further simplify 
the equation of motion in the low-Reynolds-number limit by using the stretching 
transformations 

H = :(h- l)/a:, X = (x- 3t)a,, 2 = za, and T = at t, 

c,, = 3, a: = 186, (5 )  
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FIGURE 4. The primary growth rate and neutral curves of the boundary-layer equations. 

where 0 1 ~  = (188); is the neutral wavenumber of two-dimensional disturbances in (5 ) ,  to 
yield the two-dimensional Kuramoto-Sivashinsky (KS) equation first derived by 
Nepomnyaschy (1 974a) : 

which has even absorbed the lone parameter 6 of the boundary-layer equation. The 
stretching in space in the above derivation came from the consideration that the 
unstable wavenumbers are of O(a,) or O($) while the stretching in time comes from 
the linear growth which is of O(6). These are the natural scalings. However, the $scaling 
in the amplitude restricts the Kuramot&3ivashinsky equation to small-amplitude 
waves of the prescribed order. Large-amplitude wave solutions of (6)  are not physically 
pertinent. Nevertheless, if one is cognizant that (6 )  is only valid at 6 4 1, namely near 
criticality, and small amplitudes, the KS equation can still be a welcome substitute for 
the full Navier-Stokes equation or the boundary-layer equation (2) since it is so simple 
(Chang 1993). We shall use the KS equation to establish the excitation of the 
checkerboard pattern by small-amplitude two-dimensional y1 waves at low 6. 

One can extend the amplitude limitation of the KS equation by deriving ‘strongly 
non-linear’ evolution equations of the type first derived by Benney (1966) at small 8. 
However, since there are actually two expansions - one is the long-wave expansion 
which can be derived by expanding in the film parameter 6 ,  which is equivalent to 01, 
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in (5), or 1 / ~  in (1) (see Chang 1933) and one is the small-amplitude expansion - it is 
quite questionable that one can carry out the expansion in amplitude to all orders while 
truncating the long-wave expansion at a low order as in the derivation of the strongly 
nonlinear evolution equation. The two expansion parameters are related but their 
relative order cannot be assigned a priori. It is hence not surprising that the strongly 
nonlinear evolution equation often yields finite-time blow-up solutions (Pumir, 
Manneville & Pomeau 1983; Demekhin, Kaplan & Shkadov 1987; Joo, Davis & 
Bankov 1991 ; Rosenau, Oron & Hyman 1992). Such solutions arise because physically 
impertinent large-amplitude waves are tolerated by the strongly nonlinear equations. 
This can be a serious drawback since these impertinent solutions may camouflage the 
true evolution. For example, although Joo & Davis (1992) suspected that streamwise 
subharmonic secondary instabilities are important, they were unable to extend their 
integration domain to investigate this instability. Attempts to do this led to blow-up 
solutions which have never been observed at low Reynolds numbers. This is consistent 
with the observation that the strongly nonlinear equation omits certain important 
higher-order terms in the long-wave expansion that are not negligible at large 
amplitudes. Recently, Salamon, Armstrong & Brown (1994) have shown conclusively 
that the strongly nonlinear equations yield qualitatively incorrect large-amplitude 
stationary wave solutions. In contrast, the weakly nonlinear KS equation yields the 
correct description for small-amplitude waves but it is not suitable for large waves. The 
only realistic simplification of the Navier-Stokes equation is then the boundary-layer 
equation (2) which seems to capture all correct long-wave evolution and does not 
exhibit blow-up. 

It should also be mentioned that the primary instability described above is a 
convective one (Joo & Davis 1992), and one should also determine the spatial 
amplification rate instead of the temporal one shown in figure 4. The formation of 
saturated waves due to the primary instability is then a noise-driven transition that 
should be studied with a spatial formulation. The secondary instability of these 
saturated waves downstream can also be convective (Liu et a/. 1993). The actual 
amplification rate and the evolution of the disturbances are quite distinct for absolute 
and convective primary and secondary instabilities. However, whether the Nusselt flat 
film and the saturated stationary waves are stable or unstable, the most unstable 
primary and secondary disturbances are identical in both formulations. In other words, 
the stability assignment and the wave pattern at onset can be obtained from a temporal 
formulation. Since it is still numerically formidable to integrate the three-dimensional 
boundary-layer equation in a large domain to resolve the full convective evolution, we 
shall study the primary and secondary instabilities with a temporal formulation using 
periodic boundary conditions. Consequently, while the stability assignment and the 
dominant patterns that appear at onset are correctly deciphered for both the primary 
and secondary instabilities, the subsequent evolution to ‘turbulence’ cannot be 
captured with quantitative precision by the present formulation. In particular, wave 
patterns in a convectively unstable system are driven by the noise at the inlet while a 
temporal formulation transfers this dependence to the initial condition. Consequently, 
quantitative correlation of the eventual turbulent fluctuation with the persistent inlet 
noise cannot be analysed with the present approach even though the correlation is 
expected to exist owing to the nature of convective instability. 

To analyse the secondary stability of the saturated stationary waves, we need to 
construct the waves numerically. In the earlier paper (Chang et al. 1993a), we have 
confirmed that the convectively unstable primary instability yields two-dimensional 
periodic stationary waves downstream that propagate over a long distance without 
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significant changes in speed and shape. We have hence constructed all such stationary 
waves for the boundary-layer equation and favourably compared their profiles, speeds 
and wavelengths to measured ones. There are two pertinent families of stationary 
waves, y1 and yz, each parameterized by either the wave speed c or the wavenumber 
tl. (see figures 1 and 3 ) .  The first family is slower than the neutral wave speed c, = 3 of 
( 5 )  and the second one is faster. The two families are shown in figure 3 for 6 = 0.062, 
corresponding to water at R - 5. The fast y2 family lies below a2 - OSa, while the slow 
y1 family extends from the neutral wavenumber 01, to the solitary wave limit tl. + 0. The 
amplitude of the y1 family increases with decreasing wavenumber and it vanishes at a,, 
namely it bifurcates supercritically from a0. (The wave profiles in figure 1 are drawn 
with different scales.) Consequently, at low 6, the near-neutral waves on y1 can be 
approximated by a weakly nonlinear expansion of the stationary version of the KS 
equation : 

Hzxx+H$+2(H*)2  = Q, ( H * )  = 0, (7a ,  b) 

where (. ) denotes averaging over one wavelength, H* is the stationary wave solution 
and Q = (2 (H*)2 )  is the deviation flux. We have also imposed in (7) that the small- 
amplitude solutions of the KS equation near the neutral curve are standing waves. 
They correspond to travelling waves with speed c = 3, three times the average velocity 
in the laboratory frame, since the KS equation is valid in a moving frame. Using a two- 
mode expansion, 

one can easily show that 
H* - Hk sin kX+ H,, sin 2kX, 

HE = k2(4k2 - 1 )  ( 1  - k 2 )  = 2k( 1 - 4k2) H,, 

Hzk = !jk(k2 - 1 )  - O(H;) < H,. 

(8 a )  

(8 b) 

(8 c) and 

The out-of-phase term cos 2 k X  vanishes exactly in (8 a)  since the KS equation is non- 
dispersive (Cheng & Chang 1990) and the overtone excited is in phase with the 
fundamental. The normalized wavenumber k = a/., is the normalized wavenumber 
of the original equation (2). The dependence of a, on 6 and the relationship 
H = 3(h - 1)/2at also yield the dependence of the original amplitude h on both a and 6. It 
is, however, far more convenient for our purpose to express it in the stretched variables 
of the KS equation. In (84,  we have fixed the ‘phase’ of H*(x)  by stipulating that 
H(0) = 0. A more general formulation using periodic boundary conditions would yield 

(9 a)  

(9 b) 

H* - A, eikX + A  ei2kX 
2, +c.c., 

where A ,  = -!jiH,, lAkl 2 - 1  - & 2 (4k2-  1)(1 -k2 )  = aHt 

where the complex amplitudes A ,  and A,,  are purely imaginary owing to the 
stipulation that H* vanishes at the origin. 

3. Stability of the stationary waves 
Because the near-neutral y1 waves have small amplitudes, H, - A ,  < 1, and are 

nearly monochromatic, H,, - O(HE) and A,,  - O(A;), they can be approximated by 
the weakly nonlinear theory that leads to (8) and (9). Likewise, their stability to two- 
and three-dimensional disturbances can also be discerned with a similar expansion. We 
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demonstrate this first with a streamwise stability analysis of the KS stationary waves 
H* in ( 8 a )  and (9). Carrying out a Fourier expansion of H in X ,  

H - b k  A,(T)eIkX+c.c., (10) 

where A ,  is the complex amplitude and A ,  is identically zero due to the constant- 
thickness formulation, and substituting the expansion into the one-dimensional version 
of the KS equaton in (6), one can invoke the resonant conditions for a specific 
fundamental amplitude Ak( 7') 

k f 1+ m = 0 quadratic interaction, 

k&-l+rnkn = 0 cubic interaction, 

to select only a discrete subset of the wavenumber line and obtain a set of cubic 
amplitude equations for these discrete amplitudes. Even though the original equation 
only possesses quadratic nonlinearities, the amplitude equations exhibit higher-order 
nonlinear interaction because of the contribution of higher stable harmonics (Cheng & 
Chang 1990). In particular, if one considers the evolution of a purely periodic wave 
described by a specific fundamental Fourier mode A,, which is unaffected by modes 
other than the overtones of k ,  the evolution is described by the Stuart-Landau 
equation 

A, = A, A, - v , / A , ~ ~  A,,  (1 1) 

where A, = A(k) = k2 - k4 is the linear growth rate of the fundamental and the overdot 
denotes time derivative with respect to T. The Landau constant can be shown to be 
(Cheng & Chang 1990) 

vk = - 16k2/h,, > 0 (12) 

for the KS equation, representing the interaction between the fundamental k and the 
first overtone 2k. Hence, the saturated stationary wave for this supercritical mode has 
an amplitude given by A ,  of H* in (9b). However, (11) also allows us to study the 
stability of H* to streamwise disturbances that are overtones of k by linearizing (1 1) 
about H* to yield the secondary overtone growth rate 

(1 3) dl = - 2 4  < 0, 

and hence all nearly neutral stationary waves H* of the KS equation are stable to their 
overtone streamwise disturbance. The only secondary excitation of streamwise 
disturbances hence arises from interaction with modes that are not overtones of k .  If 
we linearize all these terms about H* in the A ,  fundamental amplitude equation, we 
find that the terms in (1 1) which involve only the fundamental, are the only ones that 
survive. Consequently, the fundamental amplitude equation does not have to be 
considered in linear non-overtone secondary instabilities. This is demonstrated in our 
earlier analysis of streamwise sideband (Cheng & Chang 1990) and subharmonic (Cheng 
& Chang 1992) instabilities. We can hence focus on the dominant non-overtone modes 
that destabilize H * .  Consider one such mode, A,, such that m is not an integer multiple 
of k ;  we examine the nonlinear terms in the amplitude equation of A ,  which involve 
A, but are linear in the modes that are not overtones of A ,  since we are only interested 
in the dominant secondary instability, namely linear secondary instability of H*. These 
terms can be determined from the resonant conditions to be A ,  xk-m, 2, A,,,, 
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IA,I2 A ,  and A: XZk-,  where bar denotes complex conjugate. These quadratic and cubic 
terms, along with the linear term A,, are the dominant terms in the A ,  amplitude 
equation during the secondary instability of A,. The modes which participate in the 
secondary instability of the fundamental H* - A, eikX are then a one-parameter family 
of quartets {A,, Ak-,, A,+,, AZk-,} ,  parameterized by the index m, and possibly their 
complex conjugates. Because of our notation, m can be restricted to the interval [0, ik]  
since for k > m > ik, is identical to A,,-(,-,) when k-m is smaller than ik .  
Similar arguments apply for - k  < m < -ik and for Iml larger than k .  The case 
m = ik  is the subharmonic instability (Cheng & Chang 1992) and the case m < k 
corresponds to the sideband instability (Cheng & Chang 1990) we studied earlier. Here, 
we shall refer to all m strictly less than ik as a sideband instability. The subharmonic 
and sideband instabilities are hence the dominant instabilities of a small-amplitude 
periodic stationary wave. The present sideband instability is distinct from the earlier 
one, or from the classical Eckhaus theory, in that the ‘low’ mode A ,  in the previous 
analysis was stipulated to be linearly stable. This is not true for the falling film as is 
evident from the growth rates in figure 4. 

Having identified the two-dimensional wave quartet {A,, A,+,, A,,p,} that is 
responsible for the destabilization of a fundamental stationary wave A ,  with 
wavenumber k,  we can carry out a five-mode expansion of the KS equation (6): 

e i ( z k - m ) x  + c.c. +A,,-, H - A, e i k x  + A, eimx + A,,, ei(k+m) x + A ei(k-m) X 
k-m 

Since the fundamental A, is not important in its own destabilization, one obtains the 
following leading-order amplitude equation for the quartet : 

- 
A, = A, A, - 4imA,-, A, - 4imA, A,+,, 

A,-, = A,-, Ak-,-4i(k-m)X, A,-4i(k-rn)Xk AZk-,, 

A,,-, = A,,-, AZk-, -4i(2k-m)A,Ak-,. 

(14a) 

(14b) 

A,+, = ~k+~A,+,-4i(k+rn)A,A,,  (14c) 

( 1 4 4  

(See Cheng & Chang 1990, 1992 for the evaluation of the interaction coefficients from 
Centre Manifold theory.) The streamwise primary growth rate can be easily obtained 
from (6): 

A, = A(k) = k2 - k4. (15) 

Some important information can immediately be extracted from (14) without further 
analysis. For a vanishingly small stationary wave A, with the neutral wavenumber 
k = 1, whose amplitude vanishes as is evident from (9b), (14) indicates that the most 
unstable secondary sideband mode is A,-, whose growth rate is the primary growth 
rate A,-,. Consequently, since the primary growth rate has a maximum at k, = 1/2/2, 
the most unstable sideband mode of a vanishingly small stationary wave at the neutral 
wavenumber k = 1 or a = a,, is at 

m,, = 1 - 1/2/2, (16) 

with the secondary sideband growth rate 

dO, = d*(m,) = A(1/2/2) = ;. (17) 

It also clearly shows that all near-neutral stationary waves are unstable to the sideband 
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instability. In contrast, we shall show that the same argument yields the limiting 
secondary subharmonic growth rate of a fundamental wave at the neutral curve to be 

(18) 

It is then clear that there is a segment of the y1 stationary waves near the neutral curve 
whose dominant secondary instability is the sideband instability. 

As one moves away from the neutral curve (k = l), however, the subharmonic 
instability will replace the sideband instability as the more dominant secondary 
disturbance. We establish this by examining the secondary growth rate of any 
fundamental wave with respect to a nearly subharmonic quarter parameterized by 
m = k(i-e) with c << 1. In particular, we will show that 

di  = A; = &.. 

< d; (19) 

for stationary waves exceeding a critical amplitude which, from (9b), corresponds to 
a critical distance from the neutral curve at k = k, < 1. The secondary growth rate diPc 
represents a sideband growth rate with m slightly less than f. In this range of m, A,,, 
and ABk-, are stable modes and we can use the Centre Manifold projections from (144 
and (14d) to determine how these slave modes are ‘adiabatically’ coupled to the 
dominant master modes, 

6ikAk A, 6ikA, Ak-, 
, APk-m 

‘3ki2 - ’ki2 ’3k/2- ‘ l c j 2 ’  

where the nonlinear coefficients are evaluated at m = ik since 6 + 1. Substituting (20) 
into (14a) and (14b), we obtain the dominant amplitude equations for m - :: 

A, = h, A, -4imAk 2k-m -k 12k21Ak(2A,/(h3k/2 - A,/,), (21 a)  

A k - m  = h,_,A,-,-44i(k-m)Ak~,+ 1 2 k Z ( A ~ ~ 2 A k - m / ( h 3 ~ ~ 2 - h , i ~ ) ~  (21 b) 

where the cubic terms obviously arise from the Centre Manifold projection since the 
original KS equation only has quadratic nonlinearity. Equation (21) can be written as 

where the Jacobian for the secondary evolution is 

12k2)Ak)’ ’ 1 12k21AkI2 - 4imA, 
‘3k/2 - ’k/2 

4 - m +  [’l;k - m) 2, ’3k/2 - ‘k/2 
J =  

which is a function of the fundamental wavenumber k and the sideband interval 
m = k(i - c): J = J(k, m) = J(k, E ) .  Since, from (9 b), lA,I2 - O( 1 - k) which is small, 
this Jacobian is a function of the two small parameters lA,l and e. A simple expansion 
of the eigenvalue of J yields 
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to leading order, where 

1 21A,12 
d; = d(k, c = 0) = A,,, + 2klA,I +- 2-5k2 
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(25) 

is the subharmonic secondary growth rate, and 

1 d2h, p=-- dk2 ( m  = $k) = +(2-3k2)  < 0 

are expansions of the primary growth rate near $k. Since IA,I2 can be obtained from 
(96), one can easily derive from (24) that &(, < d; provided lAkl is larger than the 
critical value 

A leading-order estimate of IA,l(k,) in (26) can be obtained by expanding it about 
k,- 1 :  

Near the neutral curve, expansion of the fundamental amplitude (96) about the neutral 
curve k = 1 yields 

Combining (27) and (28), one obtains an estimate of the critical normalized 
wavenumber below which the subharmonic instability is the dominant streamwise 
secondary instability : 

which is in good agreement with the exact value of k ,  = 0.9952 from our numerical 
stability analysis. Consequently, there is only a small interval below the neutral curve 
where the secondary sideband instability dominates the subharmonic instability. For 
most of the nearly neutral stationary waves of the y1 family with wavenumber k,  the 
dominant secondary instability is the subharmonic instability whose growth rate can 
be estimated by combining (25) and (9b): 

I4 (k,) = W k , )  + [k: P V , )  + 4a2(k,)l;}. (26) 

lAkl (k,) = 0.077. (27) 

lAklZ - $(l - k ) .  (28) 

k ,  - 0.9960, (29) 

+ [(4k2 - 1) (1 - k2)$ 1 87k4 - 218k2 + 40 
d; = k 2 (  

80k2 - 32 

At the neutral curve, k = 1, (30) yields the limiting subharmonic secondary growth rate 
of (18). It is also clear that, near the neutral curve, this subharmonic instability is a 
static one. In figure 5,  we compare the above theory to our numerical Floquet stability 
results on the near-neutral y1 waves of the KS equation with respect to the secondary 
disturbance eik(l+”)x+ikpz+nt where v = a corresponds to the subharmonic instability, 
v < $ the sideband instability, the normalized transverse wavenumber and d the 
complex secondary growth rate. The above theory corresponds to two-dimensional 
secondary stability with ,8 = 0 but both the two-dimensional and three-dimensional 
dominant secondary modes and their secondary growth rates are depicted in figure 5 .  
Details of our numerical formulation can be found in our earlier papers (Chang et al. 
1993a, b). As is consistent with our prediction, the sideband instability is the dominant 
secondary instability for k e  (0.9952,l.O). At the neutral curve, the dominant sideband 
interval v is in exact agreement with m, of (16). The sideband instability is replaced by 



264 H.-C. Chang, M .  Cheng, E. A .  Demekhin and D. I. Kopelevich 

0.5 

0.4 

0.3 

0.2 
V 

0.1 

0 

k 

l " ' l " ' l " ' l " ' I ~  
0.4 - I 

0.6 0.7 0.8 0.9 1 .O 
k 

FIGURE 5. The real part of the dominant secondary two-dimensional (solid line) and three- 
dimensional (circles) growth rate d, and streamwise wavenumber v of the KS equation. The 
theoretical prediction d; of (30) is also shown as the broken line. 

the subharmonic instability for lower k values and larger wave amplitudes. The 
estimated static subharmonic growth rate dL of (30), which approaches at k = 1, is 
also shown to be in good agreement with the numerical values for the subharmonic 
growth near k = 1 although the sideband instability dominates at exactly the neutral 
curve with the growth rate of $ as predicted in (17). Far below the neutral curve, where 
our weakly nonlinear theory would not apply, our numerical result shows that there 
is a band of KS stationary waves at k~ (0.77,0.84) that is stable to all two-dimensional 
streamwise disturbances. This stable band was first reported by Nepomnyaschy 
(1974b). Within this band, the most unstable streamwise disturbance is the sideband 
instability although it is not sufficient to destabilize the fundamental. 

Having established that the sideband and subharmonic instabilities are the dominant 
streamwise instabilities for the fundamental saturated waves of the KS equation near 
the neutral curve and that, except for a small region near the neutral curve, the 
subharmonic instability dominates, we hence analyse the effect of transverse variation 
on the dominant subharmonic secondary instability. As shown in figure 4, transverse 
variation is stabilizing in the primary instability but this is different in the secondary 
instability owing to the nonlinear interaction with the fundamental. Because of the 
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translational invariance of the KS equation, in fact of the full equation, in the 
transverse direction, the contribution of transverse variation to both primary and 
secondary instabilities must vanish exactly at zero transverse wavenumber. This 
implies that, if the transverse variation is destabilizing, it is most likely a long-wave 
transverse instability which emanates from the zero-wavenumber limit. This long-wave 
approximation allows us to study three-dimensional secondary instability with a simple 
extension of the two-dimensional secondary stability theory for the KS equation. For 
long transverse variation (p 4 l), all the nonlinear interaction coefficients remain 
identical to the two-dimensional ones and only the linear primary growth rates need 
to be adjusted to include transverse variation, 

(3 1) 
where P is the transverse wavenumber of the primary disturbance. Expanding in p, it 
can be easily shown from (23) that the dominant three-dimensional secondary 
instabilities have growth rates 

4 , z  - (W - [(W) +P2IZ, 

P4, (32) 
-121k6+ 140k4-28k2 67k6-90k4-12k2+8 

2(5k2 - 2)2 ”+ (5k2 - 2)3 d;,/ N d;+ 

where d; corresponds to the streamwise subharmonic growth rate of (30). It is clear 
from (32) that transverse variation enhances the instability of the streamwise 
subharmonic instability fork < kp = 0.949 with a zero critical transverse wavenumber. 
This secondary excitation of three-dimensional waves involves the oblique-wave triad 

{(k 01, ( k / Z  P,)? ( - k/2> P,)L (33) 
where P, is the most unstable oblique mode, which can be estimated from (32) to be 

P, - 1.76(k,-k)i (34) 
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FIGURE 7. The unstable 1 range (shaded region) and the fastest-growing mode, jm, of the secondary 
instability of the KS y1 wave. The solid line is the analytical estimate from (34). Three-dimensional 
secondary disturbance is more unstable than two-dimensional ones for k < 0.94. All instabilities to 
the right of the dotted curve are static and the ones to the left oscillatory. 

near kp and which canA be converted to the normalized secondary wavenumber ,!? 
through division by k: p, = ,5,/k. 

The above theory yields the most important result that the secondary instability of 
near-neutral y1 waves preferentially excites three-dimensional disturbances provided 
that the streamwise wavenumber is a subharmonic one. This destabilization mechanism 
is so strong that it even obliterates the stable window with respect to two-dimensional 
disturbances as shown in figure 5. All stationary waves of y1 between k~(0.75,0.995) 
are unstable to the oblique-wave triad of (33). It is this oblique-wave triad that 
generates the checkerboard strip in the middle of the herringbone pattern in figure 2(a). 
We have hence established the secondary transition scenario from the y1 waves 
depicted in figure 3 (a). The secondary excitation of the transverse mode involves the p4 
term of (32) at smaller wavenumber k such that the most unstable transverse 
wavenumber /3, increases at lower k-values, evident from the numerical secondary 
growth rates of figures 6 and 7, as suggested by our analytical estimate (34) which is 
in agreement with the numerical values as shown in figure 7. (The exact value of kp 
from figure 7 is 0.941, which is in excellent agreement with the predicted value of 0.949 
from (32).) When the /I4 term is required for destabilization, as shown for k = 0.75 and 
0.8 in figure 6(a, b), there is a band of stable transverse wavenumbers near zero. The 
two subharmonic eigenvalues may even become complex at low 1 but these complex 
transverse modes are always stable as shown in figure 7. We summarize the secondary 
excitation of three-dimensional disturbances by the near-neutral stationary waves of 
the KS equation in figures 8 and 9, where the numerically obtained wavenumbers of 
the dominant secondary instability are depicted. The oblique-wave triads of (33) are 
shown on top of the primary neutral curve of the KS equation in figure 9. We note that 
for fundamental wavenumbers below k = 0.76, including the fastest-growing linear 
mode k ,  = 1/2/2, a stable three-dimensional primary wave can actually be excited by 
the secondary triad mechanism! 

Near criticality when the KS equation applies, the oblique-wave triad excitation is 
the only possible evolution from the window of fundamental waves stable to two- 
dimensional disturbances. This is no longer true at larger S where our earlier analysis 
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FIGURE 8. The wavenumbers of the dominant three-dimensional secondary disturbance 
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FIGURE 9. The oblique-wave triad excited by the KS y1 waves with wavenumber k. For k < 0.76, 

stable primary oblique waves outside the primary neutral curve are destabilized. 

(Chang et al. 1993a) shows that some of the y 2  waves are stable to two-dimensional 
disturbances. The second scenario, in figure 3 (b), is then possible and transverse 
variation may be triggered from the y2 waves. We give a more detailed version of our 
numerical analysis of the stability of y1 and y 2  waves for the boundary-layer equation 
for finite 6 = 0.05 in figure 10 and table 1. The secondary growth rate of the y1 family 



268 H.-C. Chang, M .  Cheng, E. A .  Demekhin and D. I. Kopelecich 

0.12 

0.16 

0.12 

dr 0.08 

0.04 

I I I 
I 

I I 
I - I  

I 
I 

I 

I I 
- I 

- 1  I 

(b) I 
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a fffn 

& 2& 36 4 6  56 

Wavenumber 
6 = 0.0866 

26 = 0.1732 
36 = 0.2598 
4& = 0.3464 
56 = 0.4330 
6& = 0.5196 
76 = 0.6062 
86 = 0.6928 
96 = 0.7794 

4 
0.1078 
0.0982 
0.091 
0.0764 
0.0631 
0.0503 
0.0182 
0.0304 
0.141 

y1 family 

dr/ac,maX V 

0.991 0.0113 
0.903 0.0345 
0.836 0.0305 
0.702 0.1051 
0.580 0.3011 
0.462 0.4737 
0.167 0.2895 
0.335 0.5 
1.296 0.5 

P 4 

0 3.09 x 10-4 
0 0.0751 

0 1.17 x 
0 5.23 x 
0 4.15 x 
0 
0 
0.4 
0 

yz  family 

d,/acmax V 

0.690 0.5 
0.003 0.5 
0.011 0.223 
0.481 0.5 
0.378 0.073 

P 
0 
0.005 
0.05 
0 
0.4 

TABLE 1. The secondary growth rate of the dominant three-dimensional disturbances at 6 = 0.05. 
The primary growth rate ~ L C ~ ~ ’  is 0.11 under this condition. 
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is essentially an extension of the KS result in figure 5.  The window with waves stable 
to two-dimensional disturbances has now reduced to a small neighbourhood around 
a, = 0.67 at 8 = 0.05 which is shorter than the fastest growing linear mode at 
a,  = 0.578. The dominant secondary instability of the 8Oi mode, which is closest to the 
stable window around a,, is the oblique wave triad of (33) with /I, close to 0.4 (see table 
1). The stability of the ye waves is quite different, however. There are discrete intervals 
that are stable to two-dimensional disturbances. Waves within these intervals are 
unstable to three-dimensional disturbances, however, and from table 1 the dominant 
secondary instabilities for these waves are both the subharmonic triads of (33) and the 
sideband oblique-wave triad 

with /I 4 1 and k - If. With the sideband triad, the streamwise variation has almost the 
same wavelength as the stationary wave (k  - k”) and one hence sees only a long-wave 
envelope modulation and little change in the streamwise wave profile. The subharmonic 
triad also introduces only disturbances in the streamwise direction that are much 
smaller in amplitude than the yz stationary waves of figure 1. There is hence little 
distortion of the streamwise wave profile by these two instabilities. However, since the 
stationary waves are two-dimensional with translational invariance in the transverse 
direction, the translational variation introduced by both three-dimensional dis- 
turbances is very apparent. This then suggests that the three-dimensional waves 
generated by the yz waves are triggered by the transverse ‘phase instability’ shown in 
figure 2. Instead of the checkerboard pattern with pinching and phase shift, one expects 
mostly transverse modulation of the crests. In this scenario which occurs when there 
is very little transverse content in the noise, there would be four distinct wave regimes 
downstream from the feed, the inception region I, region I1 with slow y1 waves of 
wavenumber as, region 111 with faster and longer ya waves and region IV with three- 
dimensional waves triggered by the yz  waves (see Chang 1994). Finally, we also note 
from table 1 that the secondary growth rate d is typically much smaller than the 
primary growth rate acFaz. This is especially true for the yz  waves which can have 
growth rates two orders of magnitude smaller than the primary one. This implies that 
the transition length for the secondary transition is far longer than the primary one. 
These transitions will be verified numerically in the next section. 

C(k, 01, (If, ( I f ,  -P>L (35)  

4. Numerical experiment on wave transitions 
To establish the two transition scenarios to three-dimensional patterns in figure 3 

suggested by our secondary stability theory, we carry out a numerical study of wave 
evolution described by the boundary-layer equation (2)  with periodic boundary 
conditions in x and z. The numerical approach is similar to our earlier two-dimensional 
evolution study (Chang et al. 1993a) with Fourier expansions in x and z and a second- 
order polynomial expansion in the y-direction within each domain of a seven-domain 
decomposition (Chang et al. 1993 b). However, owing to the much larger computational 
and memory capacity required for the three-dimensional problem, we can only include 
24 Fourier modes in the x-direction and 12 modes in the z-direction with the same unit 
wavenumber. The domain length in x is chosen such that exactly 10 streamwise x 
Fourier modes lie within the neutral curve as shown in figure 10, namely the unit 
wavenumber Oi is one-tenth the neutral wavenumber q,. The domain width in z is also 
of the same length so that the domain is exactly a square. The integration of time uses 
a fourth-order Runge-Kutta scheme. All integrations are done for S = 0.05, 
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(4 (b) 

FIGURE 11. Interfacial height h(x, z ,  t )  at t = 0,30, 70 and 100 (a-d). The crests are represented by the 
light strips. Primary filtering of transverse variation and the subsequent secondary excitation by 
the triad checkerboard pattern is evident. 

corresponding to water with y = 2850 and R = 5.693. At this condition the Nusselt 
film thickness is h, = 0.1313 mm, the average velocity ( u )  = 4.944 cm s-l and the 
fastest growing linear mode at a, = 0.5781 in figure 10 corresponds to a wavelength 
of 1.083 cm. The square domain is then 7.23 cm in width and length. 

In figure 11, we depict the interfacial height evolution with an initial condition that 
approaches white noise. The amplitudes of all modes in the unstable region are identical 
at 0.001 while their relative phases are determined from a random number generator. 
As seen from the evolution shown in figure 11, the primary instability filters the three- 
dimensional modes such that by t = 30, the waves are almost two-dimensional with 
only a slight transverse variation. About six or seven crests are observed at this stage, 
which are integer multiples of 2 very close to the fastest-growing linear mode at a, in 
figure 10. The wave profiles of these waves resemble the y1 waves. From figure 10, it 
is evident that 62 or 72 is also close to the least-unstable y1 wave at a,. Consequently, 
within the coarse resolution we have here, we do not observe the wave compression 
from am to a, seen in our more accurate two-dimensional simulation (Chang et al. 
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FIGURE 12. The y1 + yz --f phase instability transition from our numerical integration for t = 50, 100, 
250 (u-c). The streamwise y-  and transverse x-directions in these diagrams both have dimensions ten 
times the neutral wavelength, 10 x 2n/u0 = 2n/& 

1993~) .  A transverse variation is triggered rapidly at this point with crest pinching 
clearly evident by t = 70 as the oblique-wave triad of (33)  manifests itself. The 
checkerboard pattern in the middle of the herringbone in figure 2(a) is evident by 
t = 100. The streamwise subharmonic mode of the triad has effectively reduced the 
number of crests by half. Since our periodic boundary conditions in z cannot 
approximate the wall boundary effects, the two flanks of the herringbone clearly 
cannot appear. The checkerboard pattern appears to be non-stationary but owing to 
our periodic boundary conditions, downstream evolution beyond the triggering of the 
checkerboard pattern on a real film is probably not properly modelled here. 

In figure 12, we simulate an evolution from an almost two-dimensional initial 
condition. Since three-dimensional modes cannot be excited if they are initially 
zero, some amount must be present for any transverse variation to develop 
subsequently. The initial conditions h(8,O) = 0.2, h(m =l= 8,O) = 0.01, h (8 , I )  = 0.003 
and h(m =b 8, n =b 0,l)  = 0 are used here where the indices m and n denote the 
harmonics of the unit wavenumbers 6 in x and z, respectively. From figure 12 and the 
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FIGURE 13. Cross-sections of the wave profile h(x, z ,  t )  at half the width and half the length of the three 
snapshots in figure 12. The width for both profiles is 2n/& = 72.55 and the vertical scales are shown. 
The yz waves are clearly evident. 

wave profiles of figure 13, it is evident that the waves remain nearly two-dimensional 
as they evolve from a y1 wave near a, with 8 crests to a yz wave with a total of four 
crests as the 88 mode is unstable to a subharmonic two-dimensional disturbance as 
seen in table 1 and figure 10. The subharmonic instability of the y1 wave is clearly 
evident in figure 13 at t = 50 and the approach to a solitary wave like yz wave of figure 
1 is also apparent by t = 100. The yz wave at 46 then triggers a crest-modulating phase 
instability as predicted in figure 3. It is interesting to note that the wave profiles in x 
still resemble the yz solitary waves in figure 13 even after significant crest modulation 
has developed. The identical initial condition with the exception of a stronger three- 
dimensional content, h(8,l)  = 0.01, shows a dramatically different transition to the 
checkerboard pattern from the y1 wave without ever approaching the yz waves, 
as shown in figure 14. We measure the two- and three-dimensional contents at any 
time by 

and it can be seen from figure 15 that the triggering of the checkerboard pattern in 
figure 14 is extremely rapid at t = 150 in spite of the low secondary growth rate shown 
in table 1. This suggests a nonlinear acceleration process during the excitation of the 
three-dimensional patterns. 

In an effort to simulate periodic forcing experiments, we have also carried out a 
series of numerical experiments with h(m, 0) = 0.05, where m is a specific integer, and 
h(1, n) = 6 for 1 =l= m and n =k 0 with c = 2 x For m < 5,  corresponding to 
a < a, as shown in figure 10, the yz wave is always selected first without approaching 
a y1 wave. For m > 5 ,  a y1 wave is first approached before a yz wave with half the 

and 
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i4 (b) 

FIGURE 14. The y1 +checkerboard transition with more transverse content at 
t = 0,  70, 150, 200 (a-d). 

wavenumber is selected. This is followed by the phase instability transition to three- 
dimensional patterns similar to the transitions in figures 12 and 13. If we define the 
transition time GD to three-dimensional patterns as when 130 exceeds 0.2, our 
numerical experiments for periodic forcing are summarized in figure 16 where the 
transition length in cm is also shown. The two maxima at m = 3 and 7 correspond to 
the maximum secondary three-dimensional growth rates of the y1 and yz waves in 
figure 10. These maxima should be observable in a sufficiently long channel. 

5. Summary and conclusions 
The secondary transitions on a falling film are easier to decipher than other 

hydrodynamic instabilities because of the formation of long-life two-dimensional 
stationary waves in the secondary and tertiary transitions. We can hence predict the 
next transition by constructing or estimating these stationary waves and studying their 
stability. We have used this approach to understand how transverse variation is 
triggered by secondary and tertiary instabilities of the stationary waves even though 
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FIGURE 15. The explosive excitation of the checkerboard pattern in figure 14 at q, - 150: 
solid line (Z2,) and dotted line (z,). 
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FIGURE 16. The three-dimensional transition time and length for periodic forcing. The transition time 
T,, is defined as the time when Z3,, the fraction of three-dimensional Fourier wave content, exceeds 
0.2. The transition length is defined as the product of the phase speed of the fastest-growing primary 
disturbance with T,,. The parameter c measures the amplitude of the initial two-dimensional 
disturbance. 

they are suppressed by the primary instability. The two possible evolution scenarios to 
the checkerboard pattern and the modulated crest pattern are confirmed by our 
numerical experiments. Unfortunately, the three-dimensional patterns are extremely 
non-stationary as one would expect from experimental observation of the developed 
three-dimensional interfacial turbulence downstream. The non-stationary dynamics of 
the checkerboard pattern and the phase instability hence dominates this turbulence. It 
is quite possible that this subsequent non-stationary dynamics evolves around unstable 
three-dimensional stationary waves and the construction of the latter would be a 
worthwhile endeavour. In particular, scallop-shaped three-dimensional solitary waves 
have been observed to play some role in the eventual turbulent state. Such solutions 
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will be presented in a subsequent manuscript. However, full understanding of three- 
dimensional evolution can only be achieved without invoking spatial periodicity due to 
its non-stationary nature and sensitivity to inlet noise. This final breakthrough would 
then complete the delination of the intriguing hydrodynamic transitions to turbulence 
on a falling film. 

This work is supported by DOE under the Engineering Research Program. 
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